Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Pharmacol Res Perspect ; 10(1): e00922, 2022 02.
Article in English | MEDLINE | ID: covidwho-1664440

ABSTRACT

Why a systems analysis view of this pandemic? The current pandemic has inflicted almost unimaginable grief, sorrow, loss, and terror at a global scale. One of the great ironies with the COVID-19 pandemic, particularly early on, is counter intuitive. The speed at which specialized basic and clinical sciences described the details of the damage to humans in COVID-19 disease has been impressive. Equally, the development of vaccines in an amazingly short time interval has been extraordinary. However, what has been less well understood has been the fundamental elements that underpin the progression of COVID-19 in an individual and in populations. We have used systems analysis approaches with human physiology and pharmacology to explore the fundamental underpinnings of COVID-19 disease. Pharmacology powerfully captures the thermodynamic characteristics of molecular binding with an exogenous entity such as a virus and its consequences on the living processes well described by human physiology. Thus, we have documented the passage of SARS-CoV-2 from infection of a single cell to species jump, to tropism, variant emergence and widespread population infection. During the course of this review, the recurrent observation was the efficiency and simplicity of one critical function of this virus. The lethality of SARS-CoV-2 is due primarily to its ability to possess and use a variable surface for binding to a specific human target with high affinity. This binding liberates Gibbs free energy (GFE) such that it satisfies the criteria for thermodynamic spontaneity. Its binding is the prelude to human host cellular entry and replication by the appropriation of host cell constituent molecules that have been produced with a prior energy investment by the host cell. It is also a binding that permits viral tropism to lead to high levels of distribution across populations with newly formed virions. This thermodynamic spontaneity is repeated endlessly as infection of a single host cell spreads to bystander cells, to tissues, to humans in close proximity and then to global populations. The principal antagonism of this process comes from SARS-CoV-2 itself, with its relentless changing of its viral surface configuration, associated with the inevitable emergence of variants better configured to resist immune sequestration and importantly with a greater affinity for the host target and higher infectivity. The great value of this physiological and pharmacological perspective is that it reveals the fundamental thermodynamic underpinnings of SARS-CoV-2 infection.


Subject(s)
COVID-19/etiology , SARS-CoV-2/physiology , Systems Analysis , Thermodynamics , Animals , Chiroptera/virology , Humans , Inflammasomes/physiology , Nasopharynx/virology , Viral Tropism , Virus Internalization , COVID-19 Drug Treatment
2.
Pharmacol Res Perspect ; 10(1): e00917, 2022 02.
Article in English | MEDLINE | ID: covidwho-1664438

ABSTRACT

SARS-CoV-2 interacting with its receptor, angiotensin-converting enzyme 2 (ACE2), turns the host response to viral infection into a dysregulated uncontrolled inflammatory response. This is because ACE2 limits the production of the peptide angiotensin II (Ang II) and SARS-CoV-2, through the destruction of ACE2, allows the uncontrolled production of Ang II. Recovery from trauma requires activation of both a tissue response to injury and activation of a whole-body response to maintain tissue perfusion. Tissue and circulating renin-angiotensin systems (RASs) play an essential role in the host response to infection and injury because of the actions of Ang II, mediated via its AT1 receptor. Both tissue and circulating arms of the renin angiotensin aldosterone system's (RAAS) response to injury need to be regulated. The effects of Ang II and the steroid hormone, aldosterone, on fluid and electrolyte homeostasis and on the circulation are controlled by elaborate feedback networks that respond to alterations in the composition and volume of fluids within the circulatory system. The role of Ang II in the tissue response to injury is however, controlled mainly by its metabolism and conversion to Ang-(1-7) by the enzyme ACE2. Ang-(1-7) has effects that are contrary to Ang II-AT1 R mediated effects. Thus, destruction of ACE2 by SARS-CoV-2 results in loss of control of the pro-inflammatory actions of Ang II and tissue destruction. Therefore, it is the response of the host to SARS-CoV-2 that is responsible for the pathogenesis of COVID-19.


Subject(s)
COVID-19/etiology , Renin-Angiotensin System/physiology , SARS-CoV-2/physiology , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme 2/physiology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Drug Repositioning , Humans , Inflammation/etiology , Renin/antagonists & inhibitors , COVID-19 Drug Treatment
3.
Pharmacol Res Perspect ; 10(1): e00911, 2022 02.
Article in English | MEDLINE | ID: covidwho-1625316

ABSTRACT

Infection of humans with SARS-CoV-2 virus causes a disease known colloquially as "COVID-19" with symptoms ranging from asymptomatic to severe pneumonia. Initial pathology is due to the virus binding to the ACE-2 protein on endothelial cells lining blood vessels and entering these cells in order to replicate. Viral replication causes oxidative stress due to elevated levels of reactive oxygen species. Many (~60%) of the infected people appear to have eliminated the virus from their body after 28 days and resume normal activity. However, a significant proportion (~40%) experience a variety of symptoms (loss of smell and/or taste, fatigue, cough, aching pain, "brain fog," insomnia, shortness of breath, and tachycardia) after 12 weeks and are diagnosed with a syndrome named "LONG COVID." Longitudinal clinical studies in a group of subjects who were infected with SARS-CoV-2 have been compared to a non-infected matched group of subjects. A cohort of infected subjects can be identified by a battery of cytokine markers to have persistent, low level grade of inflammation and often self-report two or more troubling symptoms. There is no drug that will relieve their symptoms effectively. It is hypothesized that drugs that activate the intracellular transcription factor, nuclear factor erythroid-derived 2-like 2 (NRF2) may increase the expression of enzymes to synthesize the intracellular antioxidant, glutathione that will quench free radicals causing oxidative stress. The hormone melatonin has been identified as an activator of NRF2 and a relatively safe chemical for most people to ingest chronically. Thus, it is an option for consideration of re-purposing studies in "LONG COVID" subjects experiencing insomnia, depression, fatigue, and "brain fog" but not tachycardia. Appropriately designed clinical trials are required to evaluate melatonin.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/complications , Biomarkers/metabolism , COVID-19/physiopathology , COVID-19/virology , Endothelium, Vascular/virology , Humans , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Virus Replication , Post-Acute COVID-19 Syndrome , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL